skip to main content


Search for: All records

Creators/Authors contains: "Kokoouline, Viatcheslav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Cross-sections and rate coefficients for rovibronic excitation of the CH+ ion by electron impact and dissociative recombination of CH+ with electrons are evaluated using a theoretical approach combining an R-matrix method and molecular quantum defect theory. The method has been developed and tested, comparing the theoretical results with the data from the recent Cryogenic Storage Ring experiment. The obtained cross-sections and rate coefficients evaluated for temperatures from 1 to 10 000 K could be used for plasma modelling in the interpretation of astrophysical observations and also in the technological applications where the molecular hydrocarbon plasma is present.

     
    more » « less
  2. Abstract We discuss peculiar features of electron scattering on the N 2 molecule and the N 2 + ion, that are important for modeling plasmas, Earth’s and other planets’ atmospheres. These features are, among others: the resonant enhancement of the vibrational excitation in the region of the shape resonance around 2.4 eV, the resonant character of some of electronic excitation channels (and high values of these cross sections, both for triplet and singlet states), high cross section for the dissociation into neutrals, high cross sections for elastic scattering (and electronic transitions) on metastable states. For the N 2 + ion we discuss both dissociation and the dissociative ionization, leading to the formation of atoms in excited states, and dissociative recombination which depends strongly on the initial vibrational state of the ion. We conclude that the theory became an indispensable completion of experiments, predicting many of partial cross sections and their physical features. We hope that the data presented will serve to improve models of nitrogen plasmas and atmospheres. Graphical abstract 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract

    Dissociative recombination of N$$_2$$2H$$^+$$+is explored in a two-step theoretical study. In a first step, a diatomic (1D) rough model with a frozen NN bond and frozen angles is adopted, in the framework of the multichannel quantum defect theory (MQDT). The importance of the indirect mechanism and of the bending mode is revealed, in spite of the disagreement between our cross section and the experimental one. In the second step, we use our recently elaborated 3D approach based on the normal mode approximation combined with R-matrix theory and MQDT. This approach results in satisfactory agreement with storage-ring measurements, significantly better at very low energy than the former calculations.

     
    more » « less
  4. Abstract Cross sections for the vibrational excitation and dissociative recombination (DR) of the C F 3 + ion in collisions with electrons at low scattering energies are computed using a previously-developed approach combining the normal mode approximation for the vibrational states of the target ion and the UK R -matrix code for the evaluation of the scattering matrices at fixed geometries. The obtained cross section for the DR shows excellent agreement with the experimental data from the ASTRID storage ring. Thermally-averaged rate coefficients are obtained from the cross sections for temperatures 10–3000 K. 
    more » « less
  5. Abstract The process of electron attachment to the NO 2 molecule is investigated theoretically using an approach based on a study by O’Malley (1966 Phys. Rev. 150 14). The approach combines the normal mode approximation for representation of vibrational dynamics of NO 2 and one-dimensional treatment, along each normal mode, of the attachment process as in O’Malley’s theory, such that only a modest computational effort is required to compute the attachment cross section. Taking into account the survival probability of the formed resonant state of N O 2 − , the cross section for dissociative electron attachment to NO 2 is also estimated. To compare with available experimental data, the theoretical cross section is convoluted with energy distribution of NO 2 –e − collisions with uncertainties reported in experimental studies. Peak values of the convoluted theoretical cross section are found to be about a factor of 2–10 larger than the experimental results. 
    more » « less
  6. Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments. 
    more » « less